If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8q^2+10q-3=0
a = 8; b = 10; c = -3;
Δ = b2-4ac
Δ = 102-4·8·(-3)
Δ = 196
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{196}=14$$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-14}{2*8}=\frac{-24}{16} =-1+1/2 $$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+14}{2*8}=\frac{4}{16} =1/4 $
| -4(-c-8)=4c+8 | | -y+42=248 | | 35-s=73 | | 25^(x+2)=5^3x-4) | | -2(3x+8)=-6x+16 | | 3f-7=4 | | 25x+180-10x=390 | | 12b=4÷2 | | 4(3x-3)-4=4(x-2)+40 | | 4n+3n+6=17 | | 165-w=289 | | 4n+3(n+2)=17 | | 0.6n+5=0.4n+13 | | -(×+1)=2x | | 2(a-6)=4a-(2+12) | | 2(w-3)=5w-30 | | 25=x/20 | | 2(u+2)=-2u-24 | | 3w+48=-6(w+1) | | 2(n-4)-1=3 | | X×X+4=(x+1)(x+3) | | -2x+46=6(x-3) | | 2(z-8)-15=5 | | (4)/(3)=(1)/(6)-(5)/(4)x | | -2÷3(3x-4)+3x=5÷6 | | -6(w+1)=-2w+2 | | 0.6=0.8x | | N/14-5n/14=1/7 | | (y+4)(y+6)=120 | | x(x^2-5x+5)=4 | | ¾=12/c | | 9x-3+7x=5x+4-7x |